PHOSPHORYLATION OF DOLICHOL BY INSECT ENZYMES

The incorporation of phosphate from ATP into dolichyl phosphate mannose

Luis A. OUESADA ALLUE

Instituto de Investigaciones Bioquímicas 'Fundación Campomar' Obligado 2490, 1428 Buenos Aires, Argentina

Received 13 November 1978

1. Introduction

Dolichyl phosphate has been found to be involved in the glycosylation of proteins in eucaryotes [1]. It has been detected in mammalian tissues [2], plants [3–5], insects [6], yeast [7,8] and other eucaryotic cells [1]. The biosynthesis of dolichyl phosphate may be envisaged to occur either by dephosphorylation of the pyrophosphate derivative (presumably formed from lower molecular weight precursors [9–12]) or by phosphorylation of free dolichol which is generally found in considerable amounts as compared with its phosphate [13].

This paper reports evidence indicating that extracts of insect larvae catalyze the transfer of ^{32}P from $[\gamma-^{32}P]$ ATP to dolichyl derivatives.

2. Materials and methods

2.1. Materials

Larvae and pupae of *Ceratitis capitata* (Weidmann) (Meditarranean fruit fly) were provided by Ing. A. Turica from the Instituto Nacional de Tecnología Agropecuaria, Castelar, Argentina. Natural pig liver dolichyl phosphate was obtained as in [2]. Pig liver dolichol was a kind gift of Dr Josefina Martin-Barrientos. GDP-[¹⁴C]Man (240 Ci/mol) was obtained from New England Nuclear. [γ-³²P]ATP was prepared according to [14]. Radioactive dolichyl derivatives used as standards were biosynthesized as

Abbreviation: Dol, dolichyl

in [15,16]. All organic solvents were distilled before

2.2. Enzyme preparation

All the manipulations were carried out at 0-4 °C. Day-7 larvae were washed first with sodium hipochlorite and then with distilled water. The material was then dried with filter paper, frozen by immersion in liquid N₂ and reduced to a fine powder in a mortar. This was suspended in 250 mM sucrose, 80 mM Tris-HCl buffer (pH 7.6), 1 mM EDTA-Mg, 4 mM 2-mercaptoethanol and 0.01% (w/v) 2,6-di-tert-butyl cresol, added as antioxidant, using a glass—Teflon homogenizer. Cell débris were removed by centrifugation at 500 X g for 10 min, and the supernatant fluid was centrifuged at 8000 × g. The lipid-containing layer at the top was discarded and the supernatant fluid was used as enzyme. Protein concentration was brought to 23-25 mg/ml (method [17]) by dilution with the above mentioned buffer. This extract was about 1/3rd as active in forming Dol-P-Mann (cpm/ μ g protein) as the corresponding microsome-enriched preparations [18]. Since no bactoprenyl derivative was detected by thin-layer chromatography [15] it was concluded that bacterial contamination from the digestive tract was negligible.

2.3. Chromatography and electrophoresis

Schleicher and Schüll 2043/a paper was employed. Thin-layer chromatography was carried out on cellulose (Eastman 6064) or silica gel (Eastman 6061) plastic sheets. Solvents were:

- (A) 2-Propanol/conc. acetic acid/water (54/8/18);
- (B) Isobutyric acid/1 M ammonium hydroxide (5/3);

- (C) Chloroform/methanol/water (60/25/4);
- (D) Chloroform/2-propanol/abs. ethanol/1 M acetic acid (2/2/3/1);
- (E) 2-Propanol/water (4/1);
- (F) 95% ethanol/1 M ammonium acetate buffer, pH 3.8 (15/6).

Column chromatographies were as in [6].

3. Results

Ceratitis capitata extracts supplemented with NaF (to decrease substrate degradation) and with GDP-Man (to trap the Dol-P as Dol-P-Man [6]) catalyzed the ³²P transfer from ³²P-labelled ATP to a lipidic material in which two compounds were characterized: one as dolichyl phosphate mannose; another behaving like dolichyl monophosphate.

3.1. The formation of labelled products

The ³²P-labelled lipidic material behaved as a dolichyl phosphate hexose in a cellulose thin-layer chromatography (fig.1). Optimal ³²P incorporation was found in the presence of 2.0 mM ATP and labelling was not affected by the addition of unlabelled 1 mM phosphate or 1 mM mannose-1-P.

Elution of the labelled material and rechromatography on cellulose plates with solvent C gave two radioactive spots, one of them behaving as Dol-P-Man and another which ran slower ($R_{\rm Dol-P-Man}$ 0.88). A similar result was obtained by thin-layer chromatography on silica gel with solvent C ($R_{\rm Dol-P-Man}$ 0.8, 1.0).

When larvae extracts were incubated with $[\gamma^{-3^2}P]ATP$ and GDP- $[^{14}C]Man$ a double-labelled dolichyl-Phexose was similarly detected (fig.2A). Another ^{14}C -labelled compound containing only traces of ^{32}P was also found. This compound had the mobility of dolichyl diphosphate oligosaccharide [6].

3.2. Acid hydrolysis

After mild acid treatment of the double-labelled material (0.01 M HCl at 100°C for 30 min) the bulk of ¹⁴C radioactivity became soluble in water whereas most of the ³²P-labelled material remained soluble in the organic phase. The labelled water-soluble substances behaved like mannose and an oligosaccharide (fig.2B) and the ³²P-labelled lipidic material behaved like dolichyl phosphate both in silica gel thin-layer (fig.2B) and paper chromatography (fig.2C).

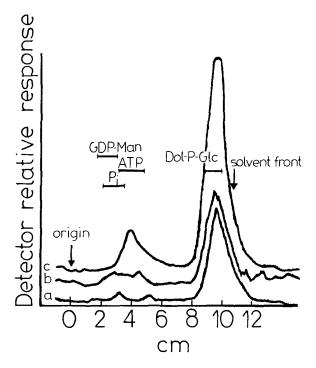
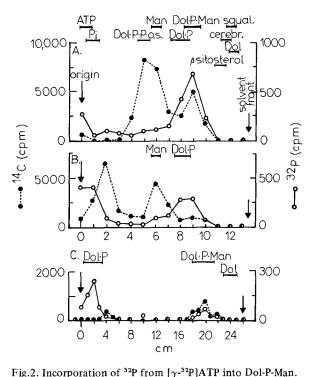



Fig.1. Phosphorylation of endogenous lipids by $[\gamma^{-32}P]$ ATP. Incubation mixtures contained: (a) 40 mM Tris-maleate buffer (pH 7.45); 8 mM MgCl₂; 2 mM MnCl₂; 1 mM EDTA; 3 mM NaF, 0.18% Triton X-100; 30 mM 2-mercaptoethanol; 1 mM GDP-Man; 1.6×10^8 cpm $[\gamma^{-32}P]$ ATP (initial spec. act. ~10° cpm/ μ mol) and enzymatic extract (3 mg protein) in final vol. 150 μ l. P_i , 1 mM, was added to incubation (b) and 1 mM ATP to incubation (c) (final conc. 2.06 mM). The mixtures were then incubated at 25°C for 30 min, stopped and processed by the method in [19]. The lower phase was washed 10--15 times with 'theoretical' upper phase containing 1 mM ATP, concentrated under N_2 and chromatographed on thin-layer cellulose plates with solvent B. Radioactive spots were located by means of a radiochromatogram scanner.

3.3. Alkaline hydrolysis

The double-labelled material was subjected to mild alkaline treatment (0.1 M KOH in 50% n-propanol at 69°C for 60 min) and some of the radioactivity became water-soluble. This labelled material was submitted to high-voltage paper electrophoresis and after scanning for radioactivity, two negatively-charged, double-labelled compounds were detected (fig.3). One of them had the mobility of mannose-1-P and the other was slower and had a much lower ³²P/¹⁴C ratio, as expected for an oligosaccharide-phosphate.

The same incubation mixture as in fig.1(c) was used, but with 2.0×10^5 cpm GDP-[14C]Man (~9 μ M) instead of unlabelled GDP-Man. The mixture was then processed and phospholipids were chromatographed together with standards in silica gel G sheets with solvent D [15], after which the latter were cut in 1 cm strips and counted in a liquid scintillator using toluene-4% Omnifluor. Dol-P was detected by the enzymatic test in [15]. (A) Non-hydrolyzed; (B) treated with 0.01 M HCl for 30 min at 100°C; (C) strips 7, 8, 9 and 10 (corresponding to Dol-P) of experiment B were washed with toluene (to remove the scintillator), the silica gel was scraped off and extracted with 0.6 N HCl in chloroform/methanol (2/1) [15]. The extract was then chromatographed on paper using solvent E and radioactivity was located as above. Abbreviations: Squal., squalene, Dol-P-P-o.s., dolichyl diphosphate oligosaccharide, cerebr., cerebrosides

In addition, two compounds labelled with ¹⁴C but not with ³²P were observed: one remained at the origin and the other migrated slightly to the cathode like a mannose standard. The fast anionic peak was eluted from the paper, treated with 0.1 N HCl for 5 min at 98°C and submitted to paper electrophoresis. It comigrated again with Man-1-P. After treatment with *E. coli* alkaline phosphatase, the ¹⁴C-label ran like mannose on silica gel thin-layer chromatography with solvent D. The ³²P-label behaved as P_i in paper

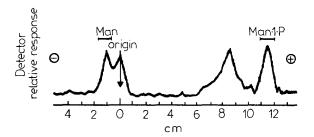


Fig. 3. Electrophoresis of water-soluble substances obtained from mild alkaline treatment of double-labelled phospholipids. Paper electrophoresis was performed at 20 V/cm for 1.5 h with 0.07 M acetic acid/10% pyridine, at pH 6.5. Radioactive spots were located by means of a scanner afterwhich the corresponding strips were cut and counted in a liquid scintillator.

chromatography with solvent F. Since identical alkaline treatment of insect Dol-P-Man released mannose-2-P (because of the β-configuration of mannose in the glycolipid [18]), the double-labelled 'fast' anionic compound was assumed to be [14C]mannose-2-32P originated from dolichyl-32P-[14C]Man. No double-labelled substances other than dolichyl-P-Man and polyprenyl-bound oligosaccharide could be detected.

3.4. Addition of dolichyl phosphate

An isotopic dilution test was performed by incubating insect extracts with $[\gamma^{-32}P]ATP$ and GDP- $[^{14}C]$ Man with or without 50 nmol purified pig liver Dol-P. The incorporation of ^{32}P into Dol-P- $[^{14}C]$ Man decreased 18-fold suggesting a competition between the exogenous Dol-P and the labelled endogenous acceptor (table 1). Analysis by thin-layer

Table 1
Effect of Dol-P on ³²P-labelling of Dol-P-Man

	³² P/ ¹⁴ C ratio in	
	Dol-P-man	Dol-P-P-oligo- saccharides
Without addition	0.350	0.023
+ Dol-P (50 nmol)	0.019	0.056

Incubations were as indicated in legend of fig.2 except for the lipid which was pre-dried under N₂ together with salts. Triplicates were processed, chromatographed and counted as indicated chromatography (solvent D) of the products of incubations containing exogenous Dol-P showed a radioactive peak somewhat different from the control in the absence of Dol-P. It was a 32 P-labelled substance of intermediate mobility ($R_{\rm F}$ 0.55) between that of Dol-P-Man ($R_{\rm F}$ 0.60) and that of polyprenyl-bound oligosaccharides ($R_{\rm F}$ 0.44). In this position, Dol-P is found together with other phospholipids: hence we might assume that Dol- 32 P had accumulated due to the presence of unlabelled Dol-P.

3.5. Addition of dolichol

Addition of pig liver dolichol to the ATP-containing incubation mixtures stimulated the biosynthesis of both 14 C-labelled Dol-P-Man and 32 P-labelled Dol-P (table 2). Since stimulation depended on the amount of endogenous insect dolichol $(0.6-1.4 \, \mu g/g)$ protein in *Ceratitis* membranes), extracts with low levels of dolichol should be necessary.

Table 2
Effect of dolichol addition

Additions	cpm	% Stimulation
A. Biosynthesis of Dol-P-[14C]Man		
None	4232	
2.3 mM ATP	4964	17.2
50 μg dolichol	4413	4.0
2.3 mM ATP + 5 μ g dolichol	5185	22.5
2.3 mM ATP + 15 µg dolichol	5642	33.3
2.3 mM ATP + 50 μ g dolichol	5867	38.6
B. Biosynthesis of Dol-32P		
Exp. 1		
None	907	
15 μg dolichol	1743	92.2
Exp. 2		
None	1444	_
15 μg dolichol	2875	99.1

The same incubation mixture as in fig.1 was used with the following modifications: part A: labelled ATP was omitted and ATP and/or dolichol were added as indicated. Triton X-100 was 0.03%. Data were the mean of 2 experiments. Part B: detergent was omitted and 1.6×10^5 cpm of GDP-[14 C]Man ($\sim 9 \mu$ M) was used instead of unlabelled GDP-Man. Experiments 1 and 2 were performed with different enzymes. The samples were processed and chromatographed as indicated in fig.2. Radioactivity was located by cutting 0.5 cm strips which were counted in a liquid scintillator

4. Discussion

Our results indicate that most of the ³²P incorporated appears in dolichyl derivatives probably due to a low level of glycero-phospholipids synthesis at days 6–8 of the *Ceratitis* life cycle [20] and to a slow rate of turnover of some of these lipids in insects [21].

Calliphora eggs have been shown [22] to synthesize [14 C]dolichol by incubating them with DL-[$^{2-14}$ C]mevalonic acid lactone. Insect and other eucaryotic polyprenols biosynthesis would be similar to that of bacterial undecaprenols [9]. Thus, a prenyl pyrophosphate precursor would be condensed head-to-tail with successive isopentenyl pyrophosphate units giving (after saturation of the α -unit) dolichyl pyrophosphate, which would be then dephosphorylated to give dolichyl phosphate [10-12].

Mevalonic acid phosphate(s) or isopentenyl pyrophosphate were not detected in our incubation mixtures. Moreover, dolichol addition stimulated Dol-P and Dol-P-Man formation. Thus, the results in this paper would indicate that some of the phosphates in dolichyl derivatives could be attributed to the activity of a polyprenyl kinase similar to that described for bacteria [23]. However, 32 P in dolichyl derivatives might be partly provenient indirectly from $[\gamma^{-32}P]$ ATP through a way starting in mevalonic acid phosphorylation. Attempts to purify the kinase activity from insect tissue extracts (with organic solvents) were not successful, unlike the results reported for procaryotic polyprenyl kinase [23].

However, the possible role of other nucleoside triphosphates as phosphate donors cannot be discarded.

The existence of a dolichol kinase would suggest the possibility of a regulatory step within the pathway of dolichyl derivatives synthesis in eucaryotes.

Acknowledgements

I am indebted to Professor L. F. Leloir for his continued guidance and support, and to the other members of the Instituto de Investigaciones Bioquímicas for many helpful discussions. I wish to thank Dr H. N. Torres and Dr R. García for the critical reading of the manuscript and their stimulating discussions. The author is a Fellow of the Consejo Nacional de

Investigaciones Científicas y Técnicas (Argentina). This investigation was supported in part by grant no. GM 19808 from the National Institutes of Health.

References

- [1] Lucas, J. and Waechter, C. J. (1976) Mol. Cell. Biochem. 11, 67–78.
- [2] Behrens, N. H. and Leloir, L. F. (1970) Proc. Natl. Acad. Sci. USA 66, 153-159.
- [3] Alam, S. S. and Hemming, F. W. (1973) Phytochem. 12, 1641-1649.
- [4] Pont-Lezica, R., Brett, C. T., Romero, P. and Dankert, M. A. (1975) Biochem. Biophys. Res. Commun. 36, 57-63.
- [5] Lehle, L., Far Taczek, F., Tanner, W. and Kauss, H. (1976) Arch. Biochem. Biophys. 175, 419–426.
- [6] Quesada Allué, L. A. and Belocopitow, E. (1978) Eur.J. Biochem. 88, 529-541.
- [7] Parodi, A. J. (1977) Eur. J. Biochem. 75, 171-180.
- [8] Lehle, L. and Tanner, W. (1978) Eur. J. Biochem. 83, 563-570.
- [9] Beytía, E. D. and Porter, J. W. (1976) Ann. Rev. Biochem. 45, 113-142.

- [10] Daleo, G. R. and Pont-Lezica, R. (1977) FEBS lett. 74, 247-250.
- [11] Daleo, G. R., Hopp, H. E., Romero, P. A. and Pont-Lezica, R. (1977) FEBS Lett. 81, 411-414.
- [12] Grange, D. K. and Adair, W. L. (1977) Biochem. Biophys. Res. Commun. 79, 734-740.
- [13] Jung, P. and Tanner, W. (1973) Eur. J. Biochem. 37, 1-6.
- [14] Glynn, I. M. and Chappell, J. B. (1964) Biochem. J. 90, 147-149.
- [15] Quesada, L. A., Belocopitow, E. and Maréchal, L. R. (1975) Biochem. Biophys. Res. Commun. 66, 1201–1208.
- [16] Quesada Allué, L. A., Maréchal, L. R. and Belocopitow, E. (1976) FEBS Lett. 67, 243-247.
- [17] Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem. 193, 265-275.
- [18] Belocopitow, E., Maréchal, L. R. and Quesada Allué, L. A. (1977) Mol. Cell. Biochem. 16, 127-145.
- [19] Folch, J., Lees, M. and Sloane, S. G. (1957) J. Biol. Chem. 226, 497-509.
- [20] Municio, A. M., Odriozola, J. M. and Pérez-Albarsanz, M. A. (1975) Eur. J. Biochem. 60, 123-128.
- [21] Crone, H. D. and Bridges, R. G. (1963) Biochem. J. 89, 11-21.
- [22] Beedle, A. S., Walton, M. J. and Goodwin, T. W. (1975) Insect Biochem. 5, 465-472.
- [23] Higashi, Y., Siewert, G. and Strominger, J. L. (1970)J. Biol. Chem. 245, 3683-3690.